

Examiners' Report January 2012

GCE Physics 6PH04 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our qualifications website at <u>www.edexcel.com</u>. For information about our BTEC qualifications, please call 0844 576 0026, or visit our website at <u>www.btec.co.uk</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to the subject team at Pearson about Edexcel qualifications. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>

ResultsPlus

Get more from your exam results

...and now your mock results too!

ResultsPlus is Edexcel's free online service giving instant and detailed analysis of your students' exam and mock performance, helping you to help them more effectively.

- See your students' scores for every exam question
- Spot topics, skills and types of question where they need to improve their learning
- Understand how your students' performance compares with Edexcel national averages
- Track progress against target grades and focus revision more effectively with NEW Mock Analysis

For more information on ResultsPlus, or to log in, visit <u>www.edexcel.com/resultsplus</u>. To set up your ResultsPlus account, call 0844 576 0024

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk.

January 2012

Publications Code UA030787

All the material in this publication is copyright $\ensuremath{\mathbb{C}}$ Pearson Education Ltd 2012

Introduction

The paper provided some challenges to candidates. Although most candidates found some parts difficult, all of the marks were awarded to some candidates. Marks were often lost due to lack of detail. This paper contained a number of questions where a result was given and the candidates were asked to justify it. Often the answers given lacked a sufficient number of physics points. Although a candidate might want to repeat what is said in the stem of a question to complete their answer and this is to be encouraged, candidates should realise that just repeating what has been given will not gain marks. There were also a number of questions where it was obvious that candidates had not read the question properly.

Section A

The response to the multiple choice questions was generally good with 5 of the questions having over 70 % correct answers and only 1 with less than 40% correct answers. In order of highest percentage correct they were, Q6 (89%), Q8 (87%), Q4 (84%), Q9 (76%), Q7 (74%), Q10 (50%), Q1 (46%), Q3 (46%), Q5 (43%) and Q2 (25%).

Q2 was a vector diagram and candidates needed to realise that the combined effect of 1 and 2 was the same as the combined effect of 3 and 4, hence C was correct. Q5 required students to realise that in a motor, as soon as the coil begins to turn in a magnetic field, an induced e.m.f. opposes this and has the effect of reducing the current but not to zero. Q3 has a bus going around a bend exerting a force on a passenger towards the centre of the circle.

Question 11 (a)

Many candidates concentrated on the uniform part of the question rather than the field and so consequently scored only one mark. It was disappointing to see how few candidates could accurately describe an electric field as an area/region where a charged particle experiences a force. Some candidates need to realise that the field lines are used to represent the field, but are not themselves the field.

11 (a) Explain what is meant by a uniform electric field. (2)An electric field is a region of space in which a changed particle with experience a force. MA An uniform electric field is mode up of parallel plates, with a potential difference applied across it. The field lines one equally spaced and porallal and the strength of the field at any point is the same, that's why it's called uniform. **Results**Plus **Examiner Tip Examiner Comments** Be careful not to write too much, this This scores two marks for the region of space where part doesn't ask how to produce a a charged particle experiences a force and the uniform field, that is in the next part, second mark for the field strength being constant. so time is wasted writing about it. 11 (a) Explain what is meant by a uniform electric field. (2)(a field) A uniform electric field is a region of space, the tween oppositely charged electrodes across a potential difference. The electric field strength is constant at all points in the field. **Examiner Tip Examiner Comments** This candidate does start by mentioning This scored zero. Strength is not good enough for 'electric field strength' and although a a region but fails to talk about the effect on a charged particle. It scores the region is mentioned, it should be related to a second mark for the constant electric force. Depending on other forces, the particle field strength. may or may not accelerate.

4 GCE Physics 6PH04 01

Question 11 (b)

Some candidates having used the parallel plates to answer (a) did not restate it in this part and often just referred to two plates. The question asked how a uniform field could be demonstrated in a laboratory and so there was an expectation of the candidates saying something like 'connect a power pack to two parallel metal plates'. That would have scored 2 marks. A diagram was acceptable for these two marks. Not many candidates scored the third mark possibly because they had never seen this demonstrated.

(b) Describe how a uniform electric field can be demonstrated in a laboratory. (3)Circuit and cell Semoling apparatus needed = Parapin Oil, a bowl, 2 plates and some powder. - Connecting the two plates to a circuite is fore positive one reactive) dip them in # the parafin oil and sprinkte some Powder over it, the powder will align itself. like 6ipola molecules in the direction of the field showing that the Sield shangth is equal. (Total for Question 11 = 5 marks) Examiner Comments A example that scores three marks. The description of one plate being negative and one positive, is not good enough for the 2nd mark but the circuit diagram scores the marks. Resu **Examiner Tip** Diagrams are often a very good

way of answering a question.

(b) Describe how a uniform electric field can be demonstrated in a laboratory. (3) Two metal plates with a potential difference across them. If a neo putively is placed at any point in Ticle EL eld the acceleration towards the positive will anon be couste **Examiner Comments** This answer lacks detail, no mention of the plates being parallel or of how the potential difference is achieved. Also just referring to a charged particle is insufficient. This scored zero. (b) Describe how a uniform electric field can be demonstrated in a laboratory. (3)2 dare changed plat 2 parallel plater can be be connected to a power supply so that they are oppositely changed. A changed object all adjust object can be placed between the plates Examiner Comments The first sentence scores two marks.


Question 12

This was a context based question where there was a hint to candidates that a current produces a magnetic field and they were told that there is a force of attraction between the two wires when the currents are in the same direction. Because they were told this, there was no mark for candidates who said that the force on wire 2 was upward and the force on wire 1 was a downward. Many answers lacked detail, jumping straight from the wires producing a magnetic field to the force acting on the wires. Five marks means five different physics points are required. Hardly any candidates said that each wire was in the magnetic field produced by the other wire or that a current carrying wire in a magnetic field can experience a force.

*12 In 1820 Hans Oersted did an experiment with an electric current in a wire. He noticed that whenever the current was on, it affected a compass needle lying near the wire. A few years later, André Ampere observed that two parallel wires attract each other if they are carrying current in the same direction. wire 1 wire 2 mag field. s wire2 Explain André Ampere's observation. You may wish to add to the diagram. The current in the wires produces a clocknise magnetic fields (as shown & for vive 1). Be This the second wire at 90°, by Wosses Fleming's Left hand rule. this causes The mag field considering the Onaude force NGO **Examiner Comments** An example of an answer that scores 4 marks. The phrase 'a clockwise magnetic field' is not enough for the current because it is not related to a current direction but the diagram around wire one and the one below are both good enough for this mark. This candidate makes a clear statement that the field of one wire, crosses the other wire. The only point not awarded is the statement about the conditions necessary for a force. **Examiner Tip** We accept without labelling the convention that a cross indicates a current into the page and a dot, a current out of the page.

s Oersted did an experiment with an electric current in a wire. He noticed or the current was on, it affected a compass needle lying near the wire.
ater, André Ampere observed that two parallel wires attract each other if ying current in the same direction.
$\frac{I_1}{I_2} \xrightarrow{\beta - field}_{\text{wire 1}} \text{wire 1}$
ré Ampere's observation. You may wish to add to the diagram. (5)
By right hand rule, the magnetic field is
always perpendicular to the current flow, on Wire 1: B-field on whe 2: Thus in Hans Dersted's experiment, the compase R affected when lying here the interview
wear the wire.
As the B-field on the right hand side of mixe 1 is
dirent to the left hand side of B-field in wire 2.
They will attract each other,
es to draw the magnetic field around the wire you can't tell if the arrow is going down at the so this only scored 1 mark for the existence of d. In the diagrams below there is no indication of so again the mark for direction is not awarded.

Make sure your diagrams are clear. A small gap can indicate where the field goes behind the wire.

Results Plus Examiner Comments

Unfortunately some candidates tried to use the wrong physics and answers like this about an induced e.m.f. were not uncommon.

Think about the situation before you start writing. For an e.m.f. to be induced you need either a changing magnetic field or relative movement neither of which are in this question.

Question 13

This question was generally answered very well with over 50% of candidates scoring the full 5 marks. A number of candidates made casual slips in their wording with the use of reflected, bounced or rebounded instead of deflected. For the first mark some candidates omitted the word straight and quite a few used free instead of empty for the 4th mark. Rutherford's experiment established that the nucleus was charged and not that it was positively charged. Since we now know that it is positively charged, we do not penalise those candidates who say that, however those that merely say the nucleus is positive i.e. miss out the word charged, do not get the mark.

*13 At the beginning of the last century, experiments were performed using alpha particles and gold foil. The alpha particles were directed at the gold foil and a detector was used to see if and where they were scattered. Summarise the results from these experiments and the conclusions that were drawn from them. (5)ides went straight Some was . alf 90 x- rarliller a the Liero orsenied was Lora the ennement was concluded that lso the Surrounded bern oun **Examiner Comments**

An example of a very good answer. This does not mention anything about the mass of the atom but because this question was a maximum five out of six marking points, this answer scored five marks.

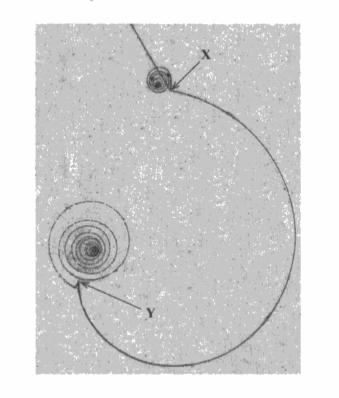
Remember when there is a * in front of a question or a question part, the quality of your written communication will be assessed. This answer is very well expressed and grammatically correct.

*13 At the beginning of the last century, experiments were performed using alpha particles and gold foil. The alpha particles were directed at the gold foil and a detector was used to see if and where they were scattered. Summarise the results from these experiments and the conclusions that were drawn from them. (5)Most of alpha particles passed straight through the gold foil undeviated. a few alpha particles deflected and a very few. alpha perparticles deflected & bounced off with an angle > 90°. This can the be inferred that most of approximation the last atom is empty space. Since alpha is positively charged and deflected when alpha is near to nucleus, the nucleus has a positive charge. & very tiny proportion of alpha deflected through large angle means that mass and charge is concentrated in the nucleus. The nucleus has a massive mass.

Another example of a full mark answer.

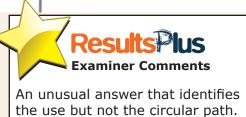
Results Plus Examiner Tip

This is not quite as well expressed as the previous answer but it is still satisfactory for the quality of written communication.


Question 14 (a)

This question as a whole was a good discriminator. All candidates were able to access some of the marks.

In (a) over 75% of the candidates were able to state that the magnetic field caused the particle to move in a circular path but it was only 25% of candidates who went on to say what could then be measured. The majority of those went for charge identification with very few saying anything about momentum/energy/velocity. A common answer with weaker candidates was to say that the magnetic field was necessary to force the particles to move through the detector.


14 The photograph shows tracks in a particle detector. (a) Explain the role of a magnetic field in a particle detector. The magnetic field is required to determine the direction the mass/momentum and charge on a particle, by causing charged particles to be deflected in an are. Thedirection radius of the arc can be used to determine chough tail that track VV was merchand by a martiala marina from **Examiner Comments** A two mark answer.

14 The photograph shows tracks in a particle detector.

(a) Explain the role of a magnetic field in a particle detector.

(2)The magnetic field allows us to determine the charge of the particle and its speed to e extent

Vr=f (a) Explain the role of a magnetic field in a particle detector. (2) provides a force on the moving charge. This produces Tł circular motion and a centripetal anelcration IS Plus **Examiner Comments Examiner Tip** The most common type of answer that was seen, scoring 1 mark. Only one piece of physics has been given but the question has two marks.

Question 14 (b)

The majority of candidates who realised that the radius of curvature decreased from X to Y went on to talk about loss of speed/momentum/energy and so scored 2 marks. It was unusual to award only 1 mark. Quite a few candidates did not read the question and only considered what was happening between X and Y and tried to use what was happening at the spirals to justify their answer. These candidates usually scored zero.

(b) Explain how you can tell that track XY was produced by a particle moving from X to Y rather than from Y to X. (2)The radius becomes smaller towards 'Y' as the particle Loses momentum this is due to ionisation within the bubble chamber. ResultsP **Examiner Comments** A perfect 2 mark answer. (b) Explain how you can tell that track XY was produced by a particle moving from X to Y rather than from Y to X. (2)the sphal shows that the patrick speeding up/acoloraling That is Why large Malar motion with barashy Y. aderation is sen At decreasing IS Examiner Comments An example of an answer that scores 0. **Results**Plus **Examiner Tip** Read the question, you only need to look at the track XY and nothing else.

Question 14 (c)

(c) Since the path of the particle is a curve, the force must be to the centre of the circle i.e. force and direction of motion are in the plane of the paper, the expected answers for the direction of the magnetic field were 'out of the page' (correct) and 'into the page' (incorrect). 60% got this right but that doesn't mean to say that the other 40% said 'into the page'. There were lots of random answers such as 'left to right' and ' north to south'. Unfortunately quite a few candidates said upwards which we could not credit because it might have meant towards the top of the page.

(c) The particle that produced track XY was a π^+ . Deduce the direction of the magnetic field in the photograph. (1)from right to lept **Examiner Comments** An unexpected answer. **Results Plus Examiner Tip** Direction of motion (current), force and magnetic field are the three mutually perpendicular components of Fleming's left hand rule. It is important to remember this. (c) The particle that produced track XY was a π^+ . Deduce the direction of the magnetic field in the photograph. (1)The magnetic field is in the verticle direction. **Results** Examiner Comments An example of an ambiguous answer. Vertical could mean out of the page but it also could mean towards the top of the page. Students should be encouraged to use the phrase into/out of the page.

Question 14 (d) (i)

Generally well answered, 46% of candidates scored 1 mark and another 44% scored two marks. For the conservation of charge mark, something more than 'it is neutral because charge has to be conserved' was needed. There had to be some mention of the actual particles involved in this decay.

(d) At Y, the π^{T} decayed into a positively charged muon (μ^{T}) and a muon neutrino. The µ⁺ has a very short range before decaying into various particles, including a positron which produced the final spiral. (i) Give two reasons why you can deduce that the muon neutrino is neutral. (2) 1 There is only Particle dector can only detect charged particles One In the photograph, there is only one path for the positron No path for muon neutrino 2 Due to conservation of charge. IL + is positive charged $\pi^+ \longrightarrow u^+ + V_u$ u^+ is positive charged therefore much neutrino must be neutral. **Examiner Comments** An example of a two mark answer. (d) At Y, the π decayed into a positively charged muon (μ) and a muon neutrino. The μ^+ has a very short range before decaying into various particles, including a positron which produced the final spiral. (i) Give two reasons why you can deduce that the muon neutrino is neutral. (2)It left no tracks in a did not write rge by being neutral **Examiner Tip** Examiner Comments This scores 1 mark for the no track comment. Whenever there is a specific decay, you must always refer to the particles and their charges to justify conservation of charge.

(d) At Y, the π^{T} decayed into a positively charged muon (μ^{T}) and a muon neutrino. The μ^+ has a very short range before decaying into various particles, including a <u>positron</u>) which produced the final spiral. et (i) Give two reasons why you can deduce that the muon neutrino is neutral. (2)1 Tot -> M+ + Vu Charge is conserved. The charge of the Tot before decay is +1. Thus, the total charge after decay is +1 as well. +1 = +1 + Ver. Ver =0 Charge of much neutrino is zero because Mt has a charge of +1. 2. The decay of Mt produces a positively charged positron. Charge is conserved. $\pi^+ \rightarrow e^+ + V_{\mu} + l \rightarrow + l + V_{\mu} \quad V_{\mu} = 0 \quad V_{\mu} \text{ is neutral}$ Plus **Examiner Tip Examiner Comments** An excellent answer for conservation There is no point repeating something of charge unfortunately it is repeated just to fill a space. If you can't think of an

answer, it is better to leave it blank rather

than waste time repeating yourself.

18 GCE Physics 6PH04 01

twice but only scores 1 mark.

Question 14 (d) (ii)

The key to this question was noticing the discontinuity in the visible path at Y. Quite a few of those who did notice this went on to discuss conservation of momentum and score the full three marks. Unfortunately 40% of candidates scored zero on this part. Some candidates worked out by a process of elimination that this must be to do with momentum having dealt with charge and no track in (i) but couldn't identify the relevant feature of the picture. These candidates did score one mark.

(11) Explain the evidence from the photograph for the production of the muon neutrino at Y. (3)The track changes direction suddenly, indicating a decay. There is only one track continuing after however, indicat that the other particle that must have been produced is **Examiner Comments** A few candidates did notice the change in direction of the path but couldn't relate it to momentum. This scored 1 mark. (ii) Explain the evidence from the photograph for the production of the muon neutrino at Y. (3)goilig in the appearie direction of the track your the TT+ decayed) which means another must be present to conserve momentum. trock the **Examiner Comments** A 3 mark answer. Succinct and accurate.

Question 15 (a)

Virtually all of the candidates recognised this question as an example of electromagnetic induction but the most common mark gained was 2, for the idea of the magnet moving and an e.m.f. being induced. At this level, on an A2 paper , there is an expectation that candidates will use the phrase magnetic flux, however the most commonly used phrase was either magnetic field or just flux. In this question, the magnet is moving relative to the coil and so it is inappropriate to refer to the coil cutting the flux/field. There was a significant number of candidates who were unable to identify what was causing the changes in the magnetic flux with some attributing it to the stylus itself.

15 A vinyl disc is used to store music. When the disc is played, a stylus (needle) moves along in a groove in the disc. The disc rotates and bumps in the groove cause the stylus to vibrate. Coil Vinyl disc Iron strips Magnet Stylus The stylus is attached to a small magnet which is near to a coil of wire. When the stylus vibrates, there is a potential difference across the terminals of the coil. (a) Explain the origin of this potential difference. (4)E=-d(NØ) As the may not vibrate the the coil cuts dt the magnetic glux lines. This induces on Eng mto the coil. The loger the cui and more grequent the vibrations, the more Eng is induced due to the coil **Examiner Comments** An example of an answer that scores 3 marks. There is a reference to magnetic flux but this candidate says that the coil is cutting the flux. **Results**Plus **Examiner Tip** A perfect answer would be: 'As the magnet moves, there is a change in the magnetic flux through the coil which induces an e.m.f.

Question 15 (b) (i)

This was a well answered calculation with 60% of candidates scoring 2 marks. For the final mark in any calculation, the calculation must be completed i.e. an answer left as a fraction or including pi will not score this mark. When errors were made, it was usually candidates using T as f or f as T and getting 11.4 radians per second and there were quite a few unit errors with m s⁻¹being used.

Question 15 (b) (ii)

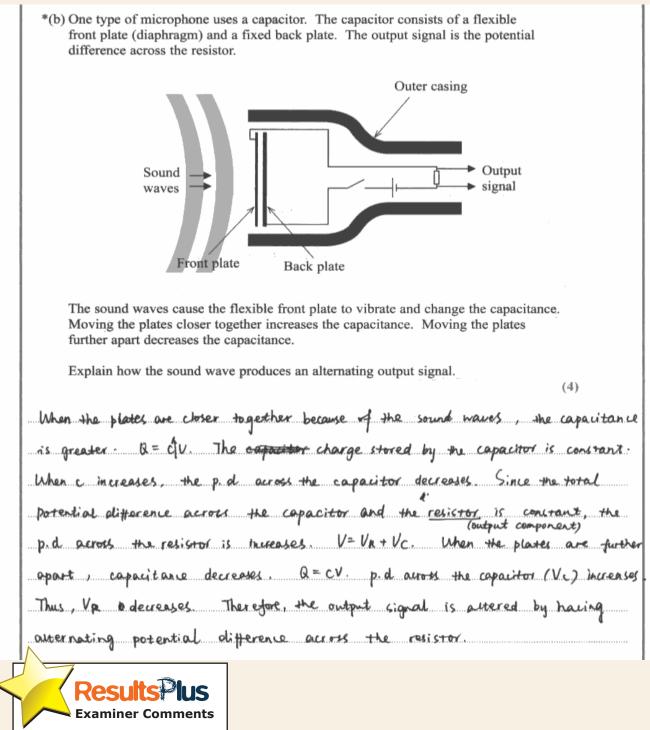
This was generally poorly answered with many candidates scoring 0. It is appreciated that the understanding of what was meant by the encoded bumps was difficult and so the mark scheme focused on the reason for this, i.e. the fact that the tangential speed nearer the centre of the record was less than at the outside. Candidates who realised this and quoted $v = r\omega$ often scored quite well. Some candidates who used the equation, failed to say that ω remained constant. However, for a lot of candidates there was confusion as to what was going up/down in this situation and often candidates wrote down contradictory statements. There was also some confusion over the use of the word compression, as some candidates took this to mean a reference to a force on the groove and so tried incorrectly, to answer this in terms of centripetal forces.

	 (ii) As the stylus moves towards the centre of the LP the encoded bumps must be fitted into a shorter length of groove. 	
	Explain why the encoding of bumps in the groove becomes more compressed a the stylus moves towards the centre.	S
		(3)
	Sman the radius is smaller and w is southant, the largential	
	velocity of the stylus (5= wr) becomes lower near the cent	re
	The mans that the same 10s of song must new be fitted	
	a smaller destance of it is to still last 10s	
$\left\langle \right\rangle$	ResultsPlus	
	Examiner Comments	
Á	A model answer that scores 3 marks.	

 (ii) As the stylus moves towards the centre of the LP the encoded bumps must be fitted into a shorter length of groove. 	
Explain why the encoding of bumps in the groove becomes more compressed as the stylus moves towards the centre.	
$By F = \frac{Mv^2}{r}$	3)
when it moves towards the centures	
the radius become smaller.	, in the second s
: F will become larger,	
it will beame more compressed.	
	1
Results lus Examiner Comments	
An example of a candidate who misinterpreted the word compressed.	

Question 16 (a)

This was generally well answered. (a)(i) was a straight forward question about a capacitor charging and the movement of charge around the circuit. There was quite a bit of confusion with (ii) where again candidates did not read the question properly and assumed that the question was asking about the capacitor discharging and its potential difference falling to zero. For those candidates who did read the question properly, most of them scored only 1 mark. This is another example of the candidates being told what happens and so there is no mark for just repeating what is given in the question. Candidates need to realise that the capacitor was in series with a resistor and so they needed to either specify that the current through the resistor was zero or do a sum of p.d.s around the circuit.


16 The diagram shows a circuit that includes a capacitor.
(a) (i) Explain what happens to the capacitor when the switch is closed. (2)
When the Switch is closed, the electrons build up on the
Capacitor's Side which is connected for the negative terminal of the
balkey. The Capacitor will then charge with it's EMF is
equal to that of the power Supply.
(ii) The potential difference (p.d.) across the resistor rises to a maximum as the switch is closed.
Explain why this p.d. subsequently decreases to zero. (2)
Once the capacitur is charged fally, the no more electrons
Can Continue to go around the circuit, thurston the as
V=IR, and the current decreases to O. The
pd will subsequently also go to 0.
Results Plus Examiner Comments
This scores 1 mark for (i) because the removal of electrons from the positive plate is removed.
(ii) having established that the charged capacitor stops the
movement of electrons, the use of $V = IR$ shows that the candidate is referring to the resistor and this scored both marks.

16 The diagram shows a circuit that includes a capacitor. (a) (i) Explain what happens to the capacitor when the switch is closed. (2)the apacitor will charge up until its potential difference matches that of the rest of the circuit. (ii) The potential difference (p.d.) across the resistor rises to a maximum as the switch is closed. Explain why this p.d. subsequently decreases to zero. (2) and has the same potential dipperence as battery/power supply. therepore the p.d. 35 the resistor is 0 as it is equal the ROOS? both sides. **lesuits Examiner Comments** This scores 1 mark only for the capacitor charging in (i) Also 1 mark for (ii) since it doesn't say that $pd_{supply} = pd_{capacitor} + pd_{resistor}$

16 The diagram shows a circuit that includes a capacitor. (a) (i) Explain what happens to the capacitor when the switch is closed. (2)The capacitor changes : positive change builds up on one place, negative change the other. There is a potential difference between the two places. (ii) The potential difference (p.d.) across the resistor rises to a maximum as the switch is closed. Explain why this p.d. subsequently decreases to zero. (2) The capiteibor charges so that the potential difference between the two plates is the same is the potential difference across the cell. This means there is no p.d. between one capacitor place and one Half of the cell : measing no p. 1. across the They are connected in series, U, + Uz = V cell resister **Examiner Comments** An example of an answer that scores all four marks.

Question 16 (b)

This context question that was very poorly answered. As soon as a candidate sees something about capacitance changing, they should find a suitable equation, in this case C = Q/V. Candidates weren't expected to know if a change in capacitance would lead to a change in V or Q so there were two alternative mark schemes allowing for either choice. Too often we saw phrases such as 'changing the capacitance will change the charge' without specifying exactly what changes occur. Just quoting the equation and giving a specific change in capacitance linked to a correct change in V or Q would have scored two marks. The next problem was that the majority of students chose to ignore the resistor and assumed that the output signal was the p.d. across the capacitor. A large number of students made no attempt to use an equation and just basically repeated what was in the question. Marks were awarded for accurate points of physics even if they did not lead to the fully correct answer.

A model 4 mark answer.

*(b) One type of microphone uses a capacitor. The capacitor consists of a flexible front plate (diaphragm) and a fixed back plate. The output signal is the potential difference across the resistor. Outer casing Output Sound signal waves Front plate Back plate The sound waves cause the flexible front plate to vibrate and change the capacitance. Moving the plates closer together increases the capacitance. Moving the plates further apart decreases the capacitance. Explain how the sound wave produces an alternating output signal. (4)The sound waves will cause the plates to rate , so when the plates are there closer charge can pacitance is operater So more produce a mais De lenge INDS overin. NOM 0 he SMO a (OA and JY 1A De asa tod INI polognace Store Mor ane (a MLO capacito so will have a greater ANS O

Examiner Comments

Scores 1 mark for the link to increases capacitance meaning increased charge.

Always quote an appropriate equation, just quoting the equation in a context based question will often score 1 mark.

*(b) One type of microphone uses a capacitor. The capacitor consists of a flexible front plate (diaphragm) and a fixed back plate. The output signal is the potential difference across the resistor. Outer casing Sound Output signal waves Front plate Back plate The sound waves cause the flexible front plate to vibrate and change the capacitance. Moving the plates closer together increases the capacitance. Moving the plates further apart decreases the capacitance. Explain how the sound wave produces an alternating output signal. (4)Sound waves are longhiholing so are a set of compressions & rareprophing These will cause the prent plate to mare, changing the capaciton o. It the capacitance changer, so will the charge flawing through the circuit, it will fluctuate. As the at put signal is connected to the capacitor, and its alternating capacities (due to recieving alternating sandwares), the atput voltage will be alternahing, as it is directly affected by the capacitance, as Q = CV so $V = \frac{Q}{C}$ if the capaciton as changing so will the voltage (P.O.) **sultsPlus Examiner Comments Examiner Tip** An example where the equation is quoted Quote an equation and then make a specific but the actual change in voltage is not point about how two of the variables will alter specified. This scored 1 mark. e.g. if charge is constant, as capacitance increases, potential difference will decrease.

Question 16 (c)

Examiner Comments

An example of a 4 mark answer.

The fact that actual values of resistance and capacitance were given in this part was an indication that a calculation was required and quite a few candidates did attempt to find the time constant for these values. There was a varying degree of success since some candidates weren't sure about the conversion of pico. Some candidates then found a frequency for this time constant rather than finding the time period for the wave under consideration. However three marks were still possible for this method. 50% of candidates scored 0 for this section because they tried to answer the question without the back up of numerical values.

(c) A microphone has a capacitor of capacitance 500 pF and resistor of resistance 10 MΩ.

Explain why these values are suitable even for sounds of the lowest audible frequency of about 20 Hz.

(4) fine constant = Sms TERC bonies be ubrating 1 ່ພາວ diaghtagen was the Denod Thor line cone ronator Holly charge each Ð Sand Pomes is Come are are at ZOH

-(c) A microphone has a capacitor of capacitance 500 pF and resistor of resistance 10-12 0.00000000000000 10 MΩ. NON 10 10000000 Explain why these values are suitable even for sounds of the lowest audible frequency of about 20 Hz. (4) VIIR a - CR 500×10 × 10×10 200 HZ **Examiner Comments** The candidate has omitted a unit of t but since this was an interim step, we assume it is seconds and so this candidate scores 3 marks. (c) A microphone has a capacitor of capacitance 500 pF and resistor of resistance 10 MΩ. Explain why these values are suitable even for sounds of the lowest audible frequency of about 20 Hz. (4) capacitance soopf is a does therefore it number Small Ven NOT long to chage take and that up requires of amount sound voures. Small a potential dufference petrien will NESISHN en mean 12e ve Signal S very Results **Examiner Comments Examiner Tip** This is typical of many answers where there is no attempt at a numerical analysis. If numerical values are given, try to use them.

30 GCE Physics 6PH04 01

Question 17 (a)

This question in total was about the production of anti-hydrogen, it appeared that many candidates felt annihilation was a good answer to give whereas in reality it was never a required answer.(a) Many candidates had leant the mantra that an antiparticle has the same mass as its particle but opposite for other properties. Candidates were required to apply that principle to a specific pair of atoms and therefore needed to realise that they were not dealing with single particles. They were expected to realise that both the hydrogen atom and the anti-hydrogen atom are neutral. Candidates who correctly identified the charge of all four particles involved without necessarily saying that the atoms were neutral were given the mark.

17 Anti-hydrogen atoms have been created at CERN. An anti-hydrogen atom consists of an anti-proton and a positron. (a) Compare the properties of an anti-hydrogen atom with a hydrogen atom. (2)Anti H will have a negative nucleus and positive positions orbiting it, regalar H Atom will have a positive nucleus with negative electron orbiting. **Examiner Comments** This answer lists all of the four particles correctly for one mark but there is no mention of mass. 17 Anti-hydrogen atoms have been created at CERN. An anti-hydrogen atom consists of an anti-proton and a positron. (a) Compare the properties of an anti-hydrogen atom with a hydrogen atom. (2)They both have the same mass. Why They both have opposite charges. Results **Examiner Comments** A common answer. The question asks about the atoms so the use of 'they' is taken to mean the atoms. Scores 1 mark for the same masses.

	17 Anti-hydrogen atoms have been created at CERN. An anti-hydrogen atom consists of an anti-proton and a positron.					
	(a) Compare the properties of an anti-hydrogen atom with a hydrogen atom. (2)					
	anti-hydrogen atom has negative charge of le					
They are of the same mass, they're both neutral.						
Arti-hydrogen atom has negative nucleus and positive position.						
Hydrogen atom has positive neucleus and negative electron.						
I						
<	Results Plus Results Plus					
	Examiner Comments Examiner Tip					
	This does score two marks and has done so in the first line only. It is important to read the question and apply your knowledge to the actual particles/atoms in the que					

Question 17 (b)

This calculation was generally well done with many candidates scoring the full three marks. Errors made were with writing the equation correctly but then forgetting to square r and failing to identify correctly the charge on the electron for both Q_1 and Q_2 . Occasionally, having set the equation up correctly, candidates made calculator errors. A small number of candidates started with the wrong equation such as the potential equation for radial fields.

(b) Calculate the electrostatic force of attraction between the positron and the anti-proton. Assume that the radius of the anti-hydrogen atom is 5.3×10^{-11} m. (3)Force = 9,21×10-8 **Results Examiner Comments** An example of a calculator error, this scored 2 marks.

(b) Calculate the electrostatic force of attraction between the positron and the anti-proton. Assume that the radius of the anti-hydrogen atom is 5.3×10^{-11} m. (3) KQ.QZ k= 47750 = # 8.992×109 F= 8.991×109)× (1.6×10-19)× - (1.6×10-19) 5.3×10-11 = -4.34×10-18 N Force = -4.34 ×10-18 N **Examiner Comments** This candidate has failed to square *r* and so gets 1 mark for correctly identifying the charges.

Question 17 (c)

This is where annihilation was the common answer. Candidates who picked up the significant difference in charge usually went on to score two marks but those answers accounted for only a small number of candidates. A very small number of candidates identified the charge difference but failed to make the link to magnetic or electric fields. This means that most candidates scored zero. The most common answer was 'annihilation' on the assumption that the anti-hydrogen would automatically come into contact with hydrogen. Another frequently seen idea was that anti-hydrogen was completely unstable and would decay.

(c) Scientists want to find out if anti-hydrogen atoms emit the same spectra as hydrogen atoms. Anti-protons are relatively easy to contain, however, it is very difficult to contain anti-hydrogen atoms for any period of time. Explain why it is difficult to contain anti-hydrogen atoms compared with anti-protons. (2)Acti portons accordence france a charge of where they are easily Anti hydrogen is nuetral and to so harder to detect and store **Examiner Comments** A candidate who realises that the charges are different but is unable to apply this fact. (c) Scientists want to find out if anti-hydrogen atoms emit the same spectra as hydrogen atoms. Anti-protons are relatively easy to contain, however, it is very difficult to contain anti-hydrogen atoms for any period of time. Explain why it is difficult to contain anti-hydrogen atoms compared with anti-protons. (2) This is because they decay very quickly in comparason to puti-protons. withis makes it hard to study them in Sugch a short time period. **Examiner Comments** An example of the decay idea.

Question 17 (d) (i)

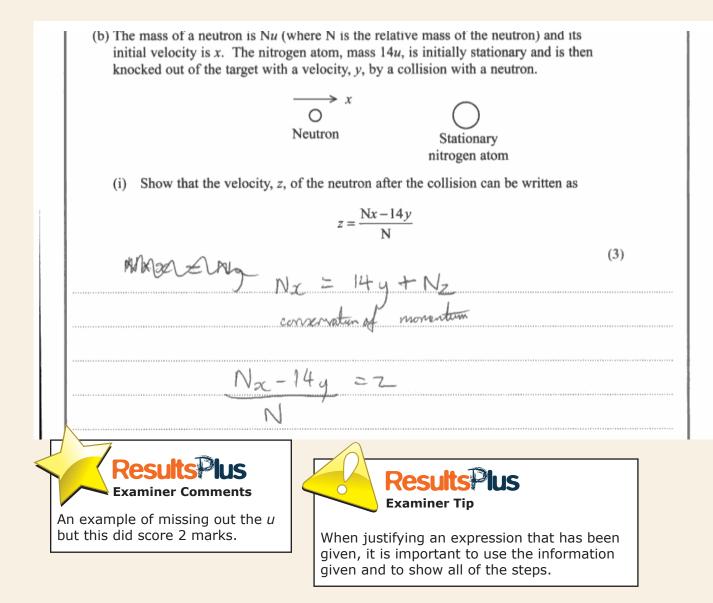
This is the part of the question where annihilation was mentioned in the question and although both particles were mentioned, the majority of candidates missed the x2 factor, getting the common wrong answer of 9.0×10^{10} J. 60% of candidates made this error and so scored 2 marks. Despite the fact that the mass was given in the question, some candidates tried to use the proton and electron mass given in the data.

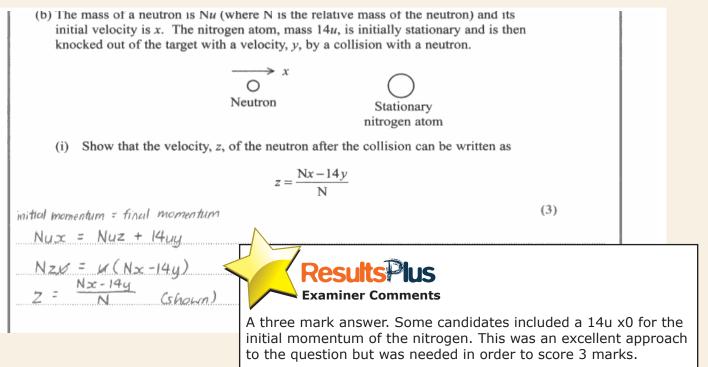
(d) The technology suggested in the science fiction series, Star Trek, for powering the Starship Enterprise relied on antimatter. When an anti-hydrogen atom meets a hydrogen atom, they annihilate and produce energy. (i) How much energy, in joules, would be produced by the annihilation of just 1 milligram of anti-hydrogen atoms? (3) $E=mc^{2}$, $E=(1\times 10^{-3})(3\times 10^{8})^{2}$ E= 9×1013 J Energy = 9×10^{13} eculte**P Examiner Comments** The most frequently seen answer. (d) The technology suggested in the science fiction series, Star Trek, for powering the Starship Enterprise relied on antimatter. When an anti-hydrogen atom meets a hydrogen atom, they annihilate and produce energy. (i) How much energy, in joules, would be produced by the annihilation of just 1 milligram of anti-hydrogen atoms? (3) ΔE = c²Δm = 13×105)²× (1×10-6) = 9×1010 T Multiplied by 2 as the same mass of hydrogen atoms gets onnihilated as well as the anti-hydrogen atoms = 1.8×10117 Energy = 9200 1.8 × 10" J Examiner Comments A small number of candidates managed to double the mass and score 3 marks.

Question 17 (d) (ii)

The use of (i) and (ii), in question part labelling, is a clue that these last two parts are linked. Even if candidates got the common wrong answer to (i), they should still have realised that the amount of energy required was very large, which was what the answer was. Again, annihilation appeared regularly but again this demonstrates that candidates are not thinking about what is being asked. Annihilation comes after antimatter has been produced but this was about the difficulty of actually producing it.

(ii) Anti-protons are required to produce anti-hydrogen atoms. The total production of anti-protons on Earth over the past 25 years adds up to only a few nanograms. Suggest why so little anti-matter has been created. (1)last for a very short time before anniholating and copture **Examiner Tip Examiner Comments** Answer the question that has been asked which is An example of an answer that is trying to explain what happens after about the creation of antimatter. This answer talks antimatter has been produced. about what might happen after antimatter is created. (ii) Anti-protons are required to produce anti-hydrogen atoms. The total production of anti-protons on Earth over the past 25 years adds up to only a few nanograms. Suggest why so little anti-matter has been created. (1)Anti-matter only excellers for a short amount of time before annihilation. **Examiner Comments** Another example of talking about what might happen after it is produced.

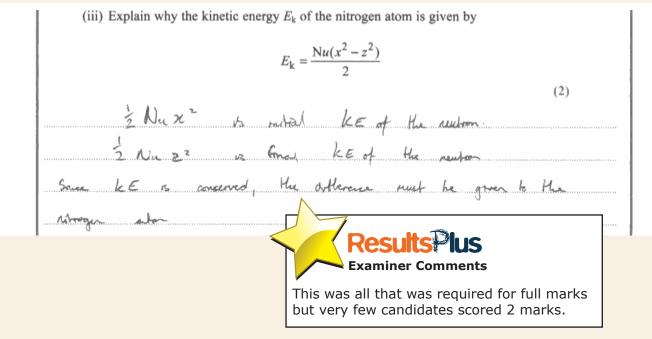

Question 18 (a)


In general this calculation was well done with 75% of the candidates scoring the full three marks. Weaker candidates tried to use $E = mc^2$ or failed to convert eV to J. Where some candidates did lose 1 mark was in not showing the value of velocity to one more significant figure. They set up their calculation correctly but just wrote down the value given in the question. Candidates should remember that a 'show that' is used when the value found will be needed later. In this case, it was needed for the last part of the question, by which time most candidates had completely forgotten about it and therefore did not use it.

18 James Chadwick is credited with "discovering" the neutron in 1932. Beryllium was bombarded with alpha particles, knocking neutrons out of the beryllium atoms. Chadwick placed various targets between the beryllium and a detector. Hydrogen and nitrogen atoms were knocked out of the targets by the neutrons and the kinetic energies of these atoms were measured by the detector. (a) The maximum energy of a nitrogen atom was found to be 1.2 MeV. Show that the maximum velocity of the atom is about 4×10^6 m s⁻¹. mass of nitrogen atom = 14u, where $u = 1.66 \times 10^{-27}$ kg (3)Mass = 2-324 K10 Kg 1.2 MeV = 1.92 KLOB J = 2. 3 K 10-26 V= 11.65k103 = 4×106 ms **Examiner Comments** An example of a candidate who does not show the value to one more significant figure. **Examiner Tip** In a 'show that' question the answer must always be given to one more significant figure than the value given in the question.

Question 18 (b) (i)

This was a relatively easy application of conservation of momentum although to get all three marks, candidates did need to to use u, since that was an integral part of the masses of the particles involved. Some students missed out the u but wrote a clear staement of momentum before = momentum after and so scored 2 marks. Whilst appreciating that the u did cancel out, students should realise that when asked to demonstrate that an equation given is correct, they should include all of the steps.

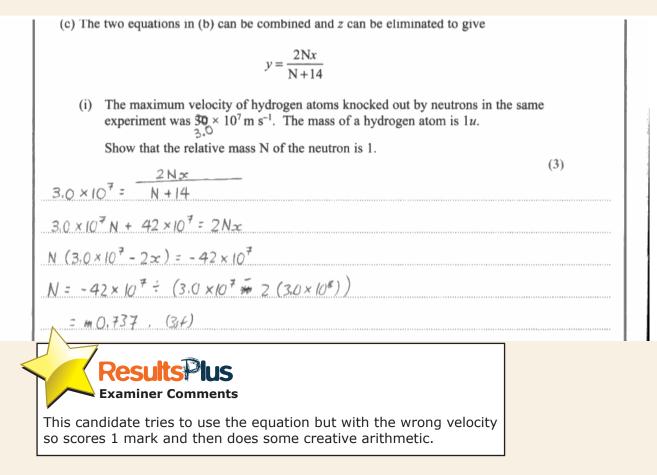


Question 18 (b) (ii)

This was a straightforward factual recall that kinetic energy is conserved in elastic collisions and the majority of candidates got it right. However, there were a number of incorrect answers. This is a simple bit of physics that all candidates should be able to recall. Some candidates said it was when momentum and kinetic energy were conserved and this answer was given the mark. However, some candidates gave a long list of options, one of which was kinetic energy, but in this case the mark was not given.

Question 18 (b) (iii)

This was another example where candidates were asked to justify a given expression, although some candidates had difficulty with this question and there was evidence of candidates trying unsuccessfully to work backwards. Candidates tried to square a difference in speed and then just move the square inside the bracket, showing a poor grasp of algebra. What was needed was a statement that the energy gained by the nitrogen was equal to the energy lost by the neutron. Candidates needed to write down expressions for the KE of the neutron before the event and after the event.



(iii) Explain why the kinetic energy E_k of the nitrogen atom is given by

 $E_{k} = \frac{Nu(x^{2} - z^{2})}{2}$ (2) $E_{k} = \frac{p^{2}}{2m} = \frac{m^{2}v^{2}}{2m} = \frac{mv^{2}}{2} = \frac{Nu(x^{2} - z^{3})}{2}$ $\frac{v^{2} = idh(z^{2} - hoad)^{2}}{z - z^{2}}$ $\frac{v^{2} = -z^{2}}{z - z^{2}}$ Results Puss Examiner Comments Many candidates scored zero and this is a typical of the answers seen, with no words, a random couple of equations and then the given expression, just written down.

Question 18 (c) (i)

This proved to be a very difficult question for all but the most able. First of all candidates needed to remember to use the speed of the nitrogen atom from (a) which was on the previous page and then they were to use an equation that they hadn't derived, so perhaps didn't understand the significance of all of the symbols. Finally they needed to realise that they could use the given equation twice, once for the hydrogen atom and once for the nitrogen atom in order to equate two expressions of 2Nx and so find N. Perhaps not surprisingly only a very small number of candidates managed this.

40 GCE Physics 6PH04 01

(c) The two equations in (b) can be combined and z can be eliminated to give

$$y = \frac{2Nx}{N+14}$$

(i) The maximum velocity of hydrogen atoms knocked out by neutrons in the same experiment was 30×10^7 m s⁻¹. The mass of a hydrogen atom is 1*u*.

Show that the relative mass N of the neutron is 1.

(3)

$$7 = \frac{2}{N+14}$$

$$3 \cdot \frac{2}{N+14}$$

$$4 \times 10^{6} = \frac{2}{2} \frac{N}{N}$$

$$\frac{N+1}{N+14}$$

$$4 \times 10^{6} (N+1)^{1} \times 10^{7} = \frac{2}{2} \frac{N}{N}$$

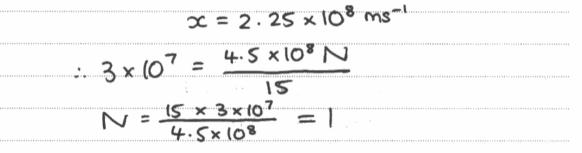
$$4 \times 10^{6} (N+1)^{4} = \frac{3}{10} \frac{N}{(N+1)^{4}}$$

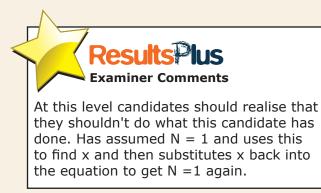
$$4 \times 10^{6} (N+1)^{4} = \frac{3}{10} \frac{N}{(N+1)^{4}}$$

$$-(\frac{4}{10} \times 10^{7}) N = -(\frac{3}{10} \times 10^{7} - 5 \cdot 6 \times 10^{7})$$

$$2 \cdot 6 \times 10^{7} N = 2 \cdot 6 \times 10^{7}$$

$$N = 1$$
Results Pus
Examiner Comments


This is an example of an answer that scores 3 marks. It was decided to give the three marks for writing the two equations correctly. As it happens this candidate successfully works through the algebra. (c) The two equations in (b) can be combined and z can be eliminated to give


$$y = \frac{2Nx}{N+14}$$

(i) The maximum velocity of hydrogen atoms knocked out by neutrons in the same experiment was × 10⁷ m s⁻¹. The mass of a hydrogen atom is 1*u*.

Show that the relative mass N of the neutron is 1.

$$3 \times 10^7 = \frac{2Nx}{15}$$

Question 18 (c) (ii)

The energy equation in (b) depending on kinetic energy being conserved and that equation was used to obtain the equation in (c), so the expected answer was that not all collisions are elastic. It was decided to accept a comment that the particles has speeds approaching the speed of light and with those two possible answers just over half of candidates scored the mark.

Paper Summary

In order to improve their performance candidates should:

Ensure they have a thorough knowledge of the physics for this unit.

Read the question and answer what is asked.

For descriptive questions, make a note of the marks and include that number of different physics points.

Show all their workings in calculations.

For descriptive questions, try to base the answer around a specific equation which is quoted.

Grade Boundaries

Grade boundaries for this, and all other papers, can be found on the website on this link: http://www.edexcel.com/iwantto/Pages/grade-boundaries.aspx

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA030787 January 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Llywodraeth Cynulliad Cymru Welsh Assembly Government

